
Installation Guide
Revision-b

Jan 2024
Manual for Firmware Rev-1.04

Tower LCC+Q
LCC (Layout Command and Control

16 line Input Output board
Plus STL Logic

This PDF is designed to be read on screen, two pages at a
time. If you want to print a copy, your PDF viewer should
have an option for printing two pages on one sheet of
paper, but you may need to start with page 2 to get it to
print facing pages correctly. (Print this cover page
separately.)

Table of Contents
Overview...4
1 About LCC...6

1.1 Some Definitions...6
1.1.1 Node...6
1.1.2 Segment...7
1.1.3 Line..7
1.1.4 Consumer (Output Function)...7
1.1.5 Producer (Input Function)...8
1.1.6 Sample Mode...9

2 Tower LCC+Q Features...10
2.1 Electrical Specifications...10

3 Line Details..12
3.1 Consumer (Output Function)..12

3.1.1 The Output Line...12
3.1.2 Drive Polarity:..12
3.1.3 Delay:...12
3.1.4 Action:..12

3.2 Producer (Input Function)..13
3.2.1 The input line...13
3.2.2 Input Trigger:...13
3.2.3 Delay..14

3.3 Sample Mode..14
4 Power and Serial Connections...15

4.1 CAN LCC® Compatible Connector..15
4.2 Power Connections...16
4.3 Status Indicators...16
4.4 Blue/Gold Buttons and LEDs..16

4.4.1 Setting up Virtual Code Lines..17
4.5 Tower LCC+Q I/O Connector Wiring..17

5 Getting Started..18
5.1 CDI (Configuration Description Information)...18
5.2 Input/Output Configuration..20
5.3 Identification...20
5.4 Node Identification...20
5.5 Line (I/O Ports)...20

5.5.1 Lines...21
5.3.4 Commands...21
5.3.5 Indications...22
5.3.6 Tower LCC+Q Secondary Messages..23

6 Tower LCC+Q STL Logic Overview..24
6.1 Statement List (STL) for the Tower LCC+Q...24

6.1.0 Preface...24
6.1.1 Purpose..24
6.1.2 Basic Knowledge Required..24
6.1.3 Segment: Conditionals...25

6.2 The Language...26
6.2.1 The Operator Statement..26
6.2.2 The Variables...27

You can download an editable version of this document from
 http://www.rr-cirkits.com/manuals/TowerLCC+Q-manual-b.odt

http://www.rr-cirkits.com/manuals/Tower%20LCC-manual-c.odt

6.2.3 The Compilation cycle..28
 6.2.4 The program cycle..30
6.2.5 The Status Word...30

6.3 Bit Logic Instructions...31
6.3.1 Overview of Bit Logic Instructions..31
6.3.2 Boolean bit logic operators:...31
6.3.3 Nesting expressions:..33
6.3.4 String termination:..35
6.3.5 Change the Result of Logic Operation (RLO):...35
6.3.6 Edge transition:...36

6.4 Logic Control..38
6.4.1 Overview of Logic Control Instructions...38
6.4.2 The Jump Instructions..38

6.5 Logic Variables...41
6.5.1 Overview of different STL variable types..41
6.5.2 Logic Operation...42
6.5.3 Segment: Logic Inputs...43
6.5.4 Segment: Logic Outputs..43
6.5.5 Segment: Track Receiver...44
6.5.6 Segment: Track Transmitter..46
6.5.7 Memory Variables..46
6.5.8 Timer Variables..47
6.5.9 Timer details..50

6.6 STL Logic Operators...52
6.6.1 Supported instruction Mnemonics...52

7 Track Circuits..54
7.1 Simulating a Code Line with Events...54
7.2 Linking Virtual Code Lines...54
7.3 Prototype Code Line...55

8 ABS and APB Signal plus other examples...56
9 Tower LCC+Q compatible Input/Output Cards...57

9.1 BOD-4 (DCC Block Occupancy Detector - 4 block plus 4 I/O)........................57
9.2 BOD4-CP (DCC BOD 4 block, 4 Inputs, plus 2 turnout drivers).....................57
9.3 BOD-8 (DCC Block Occupancy Detector - 8 block)..57
9.4 OIB-8 (Opto Isolator Board - 8 input)...58
9.5 SCSD-8 (Single Coil Solenoid Driver)...58
9.6 SMD-8 (Stall Motor Driver – 8 line)..59
9.7 RB-4 (Relay Board - 4 x SPDT)...59
9.8 RB-2 (Dual DPDT Relay Board)..59
9.9 BOB-S (Break Out Board – Screw Terminal)..59

10 Trouble shooting..61
10.1 Sanity Test..61
10.2 Activity Test..61

11 Boot Loader...62
11.1 Boot Loader Upgrade...62
11.2 Firmware Upgrade...62

12 Grounding and Isolation..64
13 Warranty Information..65
14 FCC Information..66

Tower LCC+Q Manual Rev-b 3

Overview
The Tower LCC+Q (Layout Command & Control) interface provides a simple and
easy way to connect between the NMRA LCC® CAN bus and the layout. The Tower
LCC+Q may be connected at any convenient point on the NMRA LCC® CAN bus.

LCC® is a registered trademark of the NMRA. www.nmra.org

4 Tower LCC+Q Manual Rev-b

http://www.nmra.org/

Tower LCC+Q Manual Rev-b 5

Tower LCC+Q Image

Tower LCC+Q Connectors

1 About LCC
The NMRA LCC® is a subset of the OpenLCB specifications created by the
OpenLCB group for Layout Command and Control. http://www.openlcb.org/

NMRA LCC® devices are controlled by events. Each event has a unique value that
will never be repeated by any other LCC® event in use anyplace on your system,
nor even on anyone else's system. The only meaning given to any specific event is
that which you give it.

This event uniqueness is a key differences between the LCC and legacy systems.
You can always create a link between any two points in the LCC world without
needing to know anything else about the system. No more address conflicts, no
more dedicating addresses to specific hardware, no more address space size limits.

The LCC uses 64 bit numbers to represent events, (18,446,744,073,709,551,615
possibilities) so we are not planning to run out of event numbers anytime soon.
Events are created by event 'Producers' and used by event 'Consumers'. The same
event may be created by one or more Producers, and may be used by any number
of Consumers. (or none at all)

Events happen, they are not states nor the status of indicators. The only memory of
events past exist in hardware. An event can tell you to turn a light 'on'. A different
event can tell you to turn a light 'off'. Different events can tell you to turn the same
light 'on'. However there is no event that tells you that the light is 'on'. That is a
state, and only resides in the hardware that controls the light, or hardware that
watches the state of the light. In this node we call these memory items ‘Variables’,
and they are used to store the information about layout items (actual or imaginary)
for use at some later time. In order to do logic operations The Tower LCC+Q node
includes groups of internal memory items (called Variables) to remember the
states that have resulted from the various past EventIDs.

1.1 Some Definitions

1.1.1 Node
We use the term ‘Node’ to indicate a single device or board that has both an
electrical and logical connection to an LCC network. Some nodes may have
multiple logical connections to the network, but only count as one node because
there is only a single electrical connection. (transceiver) Some devices may have
an electrical connection to the network, but not interact with the LCC logically in
any way. An example might be a Repeater. It is electrically connected, but other
nodes can not interact with it in any way. It does not count as an LCC node, but
must be accounted for when counting the number of devices on a segment.

Please note that this may not be exactly the same usage of the term ‘node’ as is
documented in the NMRA LCC specifications.

6 Tower LCC+Q Manual Rev-b

http://www.openlcb.org/

1.1.2 Segment
On a CAN based LCC network there are electrical limitations on the total number
of devices connected to the same cable, or ‘Segment’. These limitations take
several forms. Electrical limits may be overcome by the use of a repeater.

• Electrical current limits. The CAT5 cable used has a limitation of 1A per
conductor. The user is responsible to assure that sufficient power is supplied
to the cable to supply all nodes within 20’ of a power injection point without
exceeding this amount. Each node is marked with the amount of current
required or supplied to assist the user in this calculation. Be sure to count
external loads such as signal lamps, etc.

• Propagation delay. The speed of any CAN network is inversely proportional
to its total length. The LCC CAN network was chosen to run a maximum of
1000’/300m at 125K bits per second. This is a good compromise for most
layouts.

• Length. The maximum cable length of 1000’/300m is reduced by 20’/6m for
each physical node attached to the segment. This limits any segment to
about 48 nodes. The maximum cable length is also shortened by the use of a
Repeater due to the delay inherent between segments.

• Topology. Each CAN segment should be a single serial string of nodes with a
termination at each end. Short branches are allowed, but they count as
double their length when subtracted from the segment total. This required
termination serves both as the current source for a ‘0’ bit, and the cable
termination to prevent prevent signal distortion.

In the CDI itself each major section is also called a “Segment”. This use of the
word has nothing at all to do with the electrical segment discussed above. It is
simply a way to divide different (normally related) portions of the CDI from each
other to make it simpler to deal with.

1.1.3 Line
Each Tower LCC+Q contains 16 I/O lines. Each line has the ability to watch for 6
events (consumers) and to send out 6 events. (producers) Each line has two
registers. One register remembers the 'State' of the line. (on or off) The second
register remembers the state of the 'Veto' option. The veto option allows or
disallows some of the events used to control or respond to the line.

1.1.4 Consumer (Output Function)
The Output Functions are called Consumers, because they “Consume” or “Read”
messages to tell them what to do. The Output Line may be configured in 5 ways.
The hardware has an internal function generator that may be configured to create
different types of actual outputs.
Output Type:

• None (the output line is disabled)
• Steady (output line follows the output state),
• Pulse (output line alternates one time when the output state is first ‘on’),
• Blink A (output line alternates on/off while output state is 'on').

Tower LCC+Q Manual Rev-b 7

• Blink B (output line alternates off/on while output state is 'on').
Drive Polarity:

• Low (0V) The output line is low when true. (default)
• High (5V) The output line is high when true.

Delay:
The function generator also includes delay settings for both 'on' and 'off'
transitions. These same delays are used to control the blink rate and pulse length,
or to simply delay the output action for some interval after the controlling event is
seen. (e.g. to simulate “running time” on a CTC panel)

Action:
Each consumer event can be configured to control the line's output or veto register
state in one of 9 ways:

• None
• On (Line Activate), Off (Line Inactivate)
• Change (Toggle)
• Veto on (Active), Veto off (Inactive)
• Gated On (Non Veto Output), and Gated Off (Non Veto Output)
• Gated Change (Non Veto Toggle)

The consumer events may also control a Veto state. If the veto state is 'on', then
the consumer 'Gated on' (activate) and 'Gated off' (inactivate) events are ignored.

The producer 'on' (non vetoed input), and 'off' (non vetoed input) are also ignored
(blocked) when the veto state is 'on'.

1.1.5 Producer (Input Function)
The Input functions are called Producers because when they are activated they
“Produce” or “Create” messages in response to their activity.
The input line may be configured in 3 ways:

• None is no response.

• Normal response is used when an input change directly controls the sending
of events.

• Alternating action is used when a single line needs to produce alternating
control events. (e.g. turnout normal, reverse)

Each producer event can be configured to trigger in one of 10 ways:
• None

• Input On, Input Off, allow you to create events simply based on a change of
the input line. This is the normal use for a producer.

• Gated On (Non Veto Input), Gated Off (Non Veto Input), allow events to
respond to, or ignore, any input changes based on the veto state. For
example this would allow you to enable/disable fascia buttons for local
control of a turnout by using the output events from a panel switch to control
the veto.

8 Tower LCC+Q Manual Rev-b

• Cascade is the trigger option that allows you to create a new producer event
based on the commands to both activate and inactivate the output state. E.g.
to cascade a yard ladder. (Cascade combines the following two commands)

• Output State On Command (activate), Output State Off Command
(inactivate), are trigger options that allow you to create a new producer
event based on the command to activate or inactivate the output. E.g. to
cascade a yard ladder.

• Output On (function hi), Output Off (function lo), create a new event
when the output of the function generator changes. This might be used to
build a realistic traffic light controller. Be careful with this option because it
can create a lot of traffic continuously, especially if the function output is
blinking rapidly.

The 'on'-'off' time delays are used as function output delay or input debounce delay
depending on the line status.

1.1.6 Sample Mode
Sample mode is used for Berrett Hill Touch Toggles or other dual mode situations
where the input and output states of a line may not necessarily be the same. In
Sample mode the line is normally driven by its output state, but it briefly disables
the output drive and reads the un-driven (pull-up) state of the line. The input must
be current limited for the case where the input and output are not the same. The
normal output load must also be tolerant of brief changes during the input sample
interval. The output must not load the line with more than 10K to prevent the load
from causing false inputs.

Sample mode is automatically enabled if both output and input functions are
enabled on the same line. Several different I/O modules are now compatible with
Sample mode. This allows you to connect both input modules and output modules
at the same time on the same port. This can save costs by combining dissimilar
functions on the same hardware.

Tower LCC+Q Manual Rev-b 9

2 Tower LCC+Q Features
• The Tower LCC+Q uses the CAN bus implementation of the NMRA LCC.
• Communicates over the LCC CAN bus at 125Kb.
• Support for a total of 16 Input/Output lines:

• Up to 16 Input Lines. (internal pull-up termination on all lines)
• Up to 16 Output Lines.

• Internal Logic Engine with up to 4096 characters of logic space.
• Support for up to 16 virtual code lines. (8 aspects per Track Circuit)
• CDI (Configuration Description Information) controlled programming via

Software.
• Lines may be configured as individual input, output, or shared, (sampled)

lines.
• Automatically saves input/output and logic states during power down.
• Boot Loader allows contact less user firmware upgrades over the LCC®

(Layout Command & Control) connection.
• Power is supplied over the LCC® bus. The TowerLCC requires 20mA. plus

whatever load may be imposed by the I/O modules that you choose.
• Efficient switcher regulated 5VDC is available on each I/O port connector to

power external modules or lamps.

2.1 Electrical Specifications
I/O Port 1:

 Pin 1 - 5 volt logic level at 25mA.
 Pin 2 - 5 volt logic level at 25mA.
 Pin 3 - 5 volt logic level at 25mA.
 Pin 4 - 5 volt logic level at 25mA.
 Pin 7 - 5 volt logic level at 25mA.
 Pin 8 - 5 volt logic level at 25mA.
 Pin 9 - 5 volt logic level at 25mA.
 Pin 10 - 5 volt logic level at 25mA.

I/O Port 2:
 Pin 1 - 5 volt logic level at 25mA.
 Pin 2 - 5 volt logic level at 25mA.
 Pin 3 - 5 volt logic level at 25mA.
 Pin 4 - 5 volt logic level at 25mA.
 Pin 7 - 5 volt logic level at 25mA.
 Pin 8 - 5 volt logic level at 25mA.
 Pin 9 - 5 volt logic level at 25mA.
 Pin 10 - 5 volt logic level at 25mA.

Maximum current to be supplied by all I/O lines combined is 200mA. This 200mA
total limit means that not over 8 lines may supply their maximum current at any
one time.

10 Tower LCC+Q Manual Rev-b

Tower LCC+Q Manual Rev-b 11

3 Line Details

3.1 Consumer (Output Function)

3.1.1 The Output Line
The hardware has an internal function generator that may be configured in 5 ways
to create different types of actual outputs:

• None (the output line is disabled)
• Steady (output line follows the output state),
• Pulse (output line alternates one time when the output state is first ‘on’), the

pulse to either high or low level is based on the timing delay intervals, then
return to normal. Delay ‘Interval 1’ sets the time delay before the pulse
occurs, and delay ‘Interval 2’ sets the pulse length itself.

• Blink A (output line alternates on/off while output state is 'on'). Normally
used to control devices such as crossing gate flashers directly from the
output lines. ‘A’ and ‘B’ are the two phases of the flashing. Blink A or Blink B
refers to which phase starts the action.

• Blink B (output line alternates off/on while output state is 'on'). Delay
‘Interval 1’ sets the length of phase A, and delay ‘Interval 2’ sets the length
of phase B. Normally it will be more realistic to use the LED drivers
available on a Signal LCC node that can also add in the proper fade effects.

3.1.2 Drive Polarity:
• Low (0V) The output line is low when true. (default)
• High (5V) The output line is high when true.

3.1.3 Delay:
The function generator also includes delay settings for both 'on' and 'off'
transitions. These same delays are used to control the blink rate and pulse length,
or to simply delay the output action for some interval after the controlling event is
seen. (e.g. to simulate “running time” on a CTC panel)

3.1.4 Action:

Each consumer event can be configured to control the line's output or veto register
state in one of 9 ways:

• None
• On (Line Activate), Off (Line Inactivate)
• Change (Toggle)
• Veto on (Active), Veto off (Inactive)
• Gated On (Non Veto Output), and Gated Off (Non Veto Output)
• Gated Change (Non Veto Output)

12 Tower LCC+Q Manual Rev-b

In addition to controlling the Output state, the consumer events may also control a
Veto state. If the veto state is 'on', then the consumer 'Gated on' (activate) and
'Gated off' (inactivate) events are ignored.

The producer’s 'on' (non vetoed input), and 'off' (non vetoed input) are also ignored
(blocked) when the veto state is 'on'.

3.2 Producer (Input Function)

3.2.1 The input line
An input line may be configured in 3 ways:

• None is no response to the input.

• Normal response is used when an input change directly controls the sending
of events.

• Alternating action is used when a single line needs to produce alternating
control events. (e.g. turnout normal, reverse)

3.2.2 Input Trigger:
Each producer event can be configured to trigger in one of 10 ways:

• None

• Input On, Input Off, allow you to create events simply based on a change
of the input line. This is the normal use for a producer.

• Gated On (Non Veto Input), Gated Off (Non Veto Input), allow events to
respond to, or ignore, any input changes based on the veto state. For
example this would allow you to enable/disable fascia buttons for local
control of a turnout by using the output events from a panel switch to control
the veto.

• Cascade command, Combines the ‘Output State On’ and ‘Output State Off’
commands to always send the selected EventID if the consumer for this line
is activated or deactivated. This is a shortcut to cascade a yard ladder.

• Output State On Command (activate), Output State Off Command
(inactivate), are trigger options that allow you to create a new producer
event based on the command to activate or inactivate the output. This is used
to specify a cascaded command in a single direction.

• Output On (function hi), Output Off (function lo), create a new event
when the output of the function generator actually changes. This might be
used to build a realistic traffic light controller. Be careful with this option
because it can create a lot of traffic continuously, especially if the function
output is blinking rapidly.

Tower LCC+Q Manual Rev-b 13

3.2.3 Delay

Each line includes two
delay timers that are used
to control blinks, pulses,
and input debounce times.

Interval 1 controls the ‘on’
delay or time, and Interval
2 controls the ‘off’ delay or
time. The count may be set
from 0-60,000 and the

base interval may be set to Milliseconds, Seconds, or Minutes. This allows for
delays from 1ms. to over 41 days. Probably the extremes will never be required,
but this gives you a good range to choose from. Actual accuracy is ½% or better.
Millisecond times are calculated to the nearest 8 ms.

Retrigger allows the time interval to be reset if the line state is set to ‘true’ again
prior to the end of the delay time.

If the line state is set to ‘false’ prior to the end of the delay time, then the output
does not occur.

The same timers are used for both input and outputs, so there are some
combinations that are not allowed.

3.3 Sample Mode
Sample mode is used for Touch Toggles or other dual mode situations where the
input and output states of a line may not necessarily be the same. In Sample mode
the line is normally driven by its output state, but it briefly disables the output
drive in order to read the un-driven (pull-up) state of the line.

The restrictions are:

• Any input must include a 1K series resistor to prevent shorting out any
output that may be active at the same time.

• Any output must not load the line with more than a 10K load to prevent the
load from creating a false input.

• Also note that the output function must be tolerant of the brief sample times
when the output may change state during the sample period.

Sample mode is automatically enabled if both output and input functions are
enabled on the same line. Several different RR-CirKits I/O modules are now
compatible with Sample mode. This allows you to connect both input modules and
output modules at the same time on the same port. This can save costs by
combining dissimilar functions on the same hardware. (e.g. occupancy and turnout
control)

14 Tower LCC+Q Manual Rev-b

4 Power and Serial Connections
The Tower LCC+Q (16 Line I/O Board) has four connectors and four status
indicators. Two of these connectors are for connections to the LCC bus network.
The other two are used as connections to the I/O lines. This section covers the
system connections consisting of the CAN bus port connectors, power connections,
I/O port connections and Status indicators.

4.1 CAN LCC® Compatible Connector
The data connection is made to
the Tower LCC+Q via a
standard RJ-45 CAT5 cable
connected to either of the two
RJ-45 connectors. The LCC
wiring passes straight through
both connectors.

The LCC specification requires a
minimum of 1’ of cable length
between connectors. Slightly
shorter cables (10”) should not
significantly impact operation.

These cables are commonly
sold for wired Ethernet use.

Pin outs for the CAN LCC RJ-45 data connector:
 Pin Description

1 CAN H

2 CAN L

3 CAN GND

4 Alt L (DCC negative)

5 Alt H (DCC positive)

6 GND

7 GND

8 +Power 12-27V

LCC power is supplied on Pin 7 and Pin 8. Power can be from +12VDC to +27VDC.
The RR-CirKits LCC Power-Point delivers approximately 15VDC to the bus.

Tower LCC+Q Manual Rev-b 15

The LCC connectors accept standard Ethernet style CAT5 (or better) cables. 4 pair
cables are required by the Tower-LCC+Q. For any but the smallest networks it is
recommended that you choose AWG 24 CAT-5 wiring or AWG 23 CAT6 wiring. The
use of AWG 26 wiring reduces the maximum length of your network to
approximately 40% of its specified length. Especially avoid using copper clad
aluminum wire or AWG 28 low profile wiring as they have even higher than normal
resistance at the relatively low frequencies used by the LCC. This higher resistance
shortens the maximum distance for reliable communications even more than using
AWG 26 wiring does.

A note on connectors: RJ-45 crimp connectors are made with three blade styles.
(the end of the contact that crimps into/onto the wire) Single ‘U’, double ‘UU’, and
triple ‘VVV’ points. Stranded cables may be made with any of the three blade
styles because the points crimp into and between the individual wire strands.
However if you are using solid wire, then you must only use the three point style of
blade. (‘VVV’) It is designed to trap the solid wire between the three points, two on
one side, and the center one on the other side, for a corrosion tight connection.
The single or double pointed blades will simply press against the side of the solid
wire, and will fail in time. (usually the
morning of your open house)

4.2 Power Connections
The Tower LCC+Q requires an external
power source of between 7.5 and 27 volts
DC from the LCC cable.

The LCC Power-Point unit is a convenient
way to supply the required power to the
Tower LCC+Q and other LCC boards over
standard RJ45 cables.

Each segment of LCC® cable requires a terminator at each end. Power can also be
supplied by other powered LCC modules, or with the RR-CirKits LCC Repeater.

4.3 Status Indicators
The Tower LCC+Q has two status indicators located near to the LCC connectors.
The green ON status indicator shows the power status of the Tower LCC+Q itself.
The red ACT (activity) indicator normally shows all data activity on the bus, and
also any activity/error status during a boot loader firmware upgrade. (see section
10.0)

4.4 Blue/Gold Buttons and LEDs
A limited amount of configuration may be accomplished on some manufacturer’s
nodes by using the Blue and Gold push buttons and indicators. The primary use is
to link up producer and consumer lines. The Tower LCC+Q does not support this
option.

16 Tower LCC+Q Manual Rev-b

 LCC Power-Point shown with Terminator

The Gold LED can indicate two different error messages. If it is flashing (10% duty
cycle) it indicates that it is idling in forced boot loader mode. If the Gold LED is
blinking (50% duty cycle) it indicates that the board was unable to initialize itself
on the network, most likely because it could not establish an alias.

4.4.1 Setting up Virtual Code Lines
Use the CDI tools to setup links. The EventID for the TX code set will always come
from the transmitting node and be entered into the receiving node to avoid
accidental reuse of EventID numbers from setup to setup.

Each node can setup one or more virtual code lines to any other node. For
simplicity these virtual links are named 'Circuit Y1', ‘Circuit Y2’, etc. It is
incumbent upon the user to keep track of which 'Coded' virtual links are created
between nodes. Be sure to record which block (1-16) is used for each side of the
virtual links if you have not standardized these connections. There is no need to
use the same 'block' number on both sides of any virtual coded track circuits, and
in fact they will not normally be matching. Normally these virtual links will follow
along with the rails, but there is no actual requirement that they do so.

Each track circuit links the logic with one out of a group of eight line states.
Normally these are used to represent the track speed allowed at arrival to the next
mast. This is based on the ‘Aspect’ shown by the mast.

4.5 Tower LCC+Q I/O Connector Wiring
The two port connector's wiring is as follows. Note that the pin numbers and I/O
line numbers are NOT the same, and actually run opposite to each other.

Pin number Connection name Image

1 line 8

2 line 7

3 line 6

4 line 5

5 Ground

6 +5VDC

7 line 4

8 line 3

9 line 2

10 line 1

10 position IDC cable numbering and description

Tower LCC+Q Manual Rev-b 17

5 Getting Started
To properly display the Tower LCC+Q CDI you will need to use JMRI DecoderPro
5.6 or later <http://www.jmri.org/> to configure the Tower LCC+Q. This "point and
click" interface will save you much time and frustration while setting the many
possible options that you will need to configure, and in fact are the only way that
we suggest for configuring the Tower LCC+Q node.

Node Address: Each Tower LCC+Q has a single node address that is used for CDI
programming on the layout. Each individual Tower LCC+Q has its node address
imprinted on a label on the back side of the board. It is recommended that you
name your node with a friendly user name as the first step in configuration.

5.1 CDI (Configuration Description Information)
The CDI is the tool used to access the LCC node’s internal configuration options.
Instead of relying on printed manuals or volunteer created files to present the
various decoder options, (like DCC devices have for the past 20 years) the LCC
specification expects the manufacturer of the LCC node itself to present its
capabilities and options in a standardized manner from an internal file. This allows
any LCC configuration tool to be used interchangeably, and not need to be updated
to support new hardware or firmware
upgrades.

Start up the CDI tool. Once the tool is
monitoring the LCC network you will
be presented with a list of nodes
similar to this.

The list should include all the nodes
that are currently visible on your LCC
network. In this example the first entry
in the list (02.01.12.7F.0A.44) is the
configuration program itself as seen
through the interface.

Select the node that you desire
to configure and click on its ‘+’
to open it. This will open up
further options for that node. In
this example there are various
options including ‘Open
Configuration dialog’ and a list of
‘Protocols Supported’.

18 Tower LCC+Q Manual Rev-b

CDI Window

Open Node

http://www.jmri.org/

The Node Information will help you to be
sure that you have chosen the correct node.

With the JMRI CDI program you simply
highlight an item to open it in a new
window.

CDI is the supported Protocol that you will
need for configuration purposes.

Remember that with the LCC this display
information is provided by the manufacturer
and stored in the node itself rather than in
some piece of paper, external file or
program.

Once the CDI window opens up you can
modify its contents by using the ‘Refresh’
and ‘Write’ buttons found near to each item.

The Refresh button will present a new,
unused, default value if one has not been
previously stored.

There is also a ‘Refresh All’ button
located at the bottom of the window.
This will reload all the EventID current
values from the device’s internal
storage.

The Write button will store the currently
displayed value or selection into the

node’s memory. If you have changed any
value you must always then do a ‘Write’ to
store it into the node before it can take
effect.

The JMRI CDI tool will highlight the entry
with orange until it has been written to the
board. This is a helpful reminder that the
change has not yet been stored into the
board where it can take effect.

Tower LCC+Q Manual Rev-b 19

Highlight ‘Open Configuration dialog’ to
open the CDI in a new window.

 Deepsoft CDI Window

Open the JMRI CDI Window

5.2 Input/Output Configuration
We suggest that the user take advantage of the JMRI CDI tool or a similar program
to set the Tower LCC+Q configuration values.

The following examples are using the JMRI CDI tool for the Tower LCC. Select the
‘LCC’ drop down list and click on ‘Configure Nodes’. When the node selection
window opens, choose the node to configure, click on ‘Open Configuration dialog’.

This will open the CDI tool and automatically read in the basic information for the
node.

This information is presented in a tabular format to allow a reasonably compact
display but still have easy access to the vast amount of configuration information.

5.3 Identification
The first section shown will be the Identification. It includes the manufacturers

name and node model plus any version information.

5.4 Node Identification
The next item is the Node Identification. It contains the Name and Description
that you give to the node. The name of this example node is ‘TEST 24’. This name
will appear in the node selection window to make it easier to select the correct
node for configuration. There is a 63 character limit to the node name and
description items.

5.5 Line (I/O Ports)
The Tower LCC+Q has two 8 bit Input/Output ports for a total of 16 lines. Each
port is normally configured to be either all Inputs, or all Outputs, to be compatible
with the various RR-CirKits I/O modules. However each line may also be
individually set as either input or output for special purposes.

20 Tower LCC+Q Manual Rev-b

 JMRI CDI Window

For the special case of one wire I/O a line may even be configured as both input
and output at one time. (Sample Mode section 1.2) The Berrett Hill Touch Trigger
is an example of a one line device. The Tower LCC+Q can also control both the
indicator’s color, using consumers, and report the output, using producers in the
same channel.

Any special effects may be applied differently for each line. E.g. one line may be
held steady while another sends a pulse or is blinking.

5.5.1 Lines
Each I/O line is called a ‘Line’ and is selected by tabs and presented separately.
Note that lines 1-8 appear on Port 1, and lines 9-16 appear on Port 2 of the node.

5.3.4 Commands
Commands are consumer events that are sent to the line. A command can directly
control the line, for example by turning it on or off. A command may also indirectly
control the line, for example by controlling its veto status. Each line has 6
consumer events associated with it. Each Consumer event is associated with a
single task or action.

For example event 1 could be used to turn an output ‘on’, and event 2 could be
used to turn an output ‘off’. The consumer events are:

• None –

• On (Line Active) – Sets the output state to ‘true’

• Off (Line Inactive) – Sets the output state to ‘false’

• Change (Toggle) – Changes the output state to its opposite state

• Veto On (Active) – Sets the veto state to ‘true’

• Veto Off (Inactive) – Sets the veto state to ‘false’

Tower LCC+Q Manual Rev-b 21

• Gated On (Non Veto Output) – Sets the output state to ‘true’ if veto is
‘false’

• Gated Off (Non Veto Output) – Sets the output state to ‘false’ if veto is
‘false’

• Gated Change (Non Veto Output) – Inverts the output state if veto is
‘false’

The last three items probably need some clarification. An event set to ‘On’ will
always set the output state to ‘true’. However an event set to ‘Gated On’ will only
set the output to ‘true’ if the veto state is ‘off’. If the veto state is ‘on’ then the
three ‘Gated’ events are ignored, and the line does not change state.

For example when a CTC operator controls a turnout he would send the events
configured as ‘On’ and ‘Off’. However a local operator button would send the
(different) events configured as ‘Gated On’ and ‘Gated Off’. The CTC operator
could then send a ‘Veto On’ event that would block the local operator from
controlling the turnout, but still allow normal operation from his own panel. Then
the CTC operator could send a ‘Veto Off’ event that would re-enable the local
operator’s control over the turnout.

5.3.5 Indications
Indications are producer events that are sent to the bus. Each line has 6 producer
events associated with it.

Each Producer event is associated with one action. For example event 1 could be
used to indicate that the input line is changed to ‘active’, and event 2 could be
used to indicate that the input line is changed to ‘inactive’. The consumer events
are:

• None – This event is not created in response to anything.

• Input On – Responds to an input level change to ‘true’

• Input Off – Responds to an input level change to ‘false’

• Gated On (Not Veto Input) – Gated response to an input level change to
‘true’

• Gated Off (Not Veto Input) – Gated response to an input level change to
‘false’

• Cascade command – Responds to any output state change

22 Tower LCC+Q Manual Rev-b

• Output State On command – Responds to an output state change to ‘true’

• Output State Off command – Responds to an output state change to ‘false’

• Output On (Function hi) – Responds to an output level change to ‘high’

• Output Off (Function lo) – Responds to an output level change to ‘low’

5.3.6 Tower LCC+Q Secondary Messages
In these examples there are no second or third messages being sent in the sense of
our previous LocoNet products. However additional messages may be sent or
responded to if desired by utilizing unused events. For example to activate a 'Next'
turnout whenever the 'first' turnout event is sent, in order to sequence a yard
ladder, you could use the ‘Cascade command’ to send an event to the next turnout
in the ladder. These additional messages, if enabled, are sent whenever the
primary event occurs. Another simple example would be to allow two or even three
different messages to be sent when ever a single button is pressed. For example a
single event could be the master reset for many turnouts simply by adding it as an
additional ‘On’ or ‘Off’ event to each turnout in the group.

Tower LCC+Q Manual Rev-b 23

6 Tower LCC+Q STL Logic
Overview

The logic contained in the Tower LCC+Q is a major departure from our previously
available logic. In the past we included some simple conditional logic that could be
configured by filling in boxes or selecting options from a list. This was useful, and
powerful enough to do basic signaling. However it was not capable of creating
generic logic statements, nor even complex signal logic without needless
repetition.

To get around these restriction we have completely eliminated the previous
conditional based logic and replaced it with a simplified version of STL (Statement
List) logic.

For those folks already familiar with STL, we have removed all temporal functions.
In other words we can not count, do math, nor do any analog operations. We can
preset timers to fixed values, but we can not change timer values based on the
result of logic operations. (other than by choosing between different timers)

We have also intentionally restricted any program branching (Jumps, Go-to, etc.) to
only be allowed in the forward direction. This prevents the creation of any loops,
both intentional or accidental. The logic itself steps through its statement list every
20mS recalculating each logic statement found in the current path. If a
recalculation results in a change from a previous state, then that change is used to
create one or more EventIDs representing the new logic state.

6.1 Statement List (STL) for the Tower LCC+Q
The STL for the Tower LCC+Q is a subset of the Siemens S7-x language.

6.1.0 Preface
In addition to its 16 I/O lines, and virtual track code lines, the Tower LCC+Q also
includes 32 logic operator groups. This logic is state driven, not event driven. To
interface the logic with LCC EventIDs we provide two tables to convert Inputs and
Outputs into their corresponding events. The STL logic may be used to create
signaling logic or other animations such as control of grade crossings. It may also
be used to create NX (eNtry Exit) routing.

6.1.1 Purpose
This section of the manual is your guide to creating user programs in the
Statement List programming language STL.

The manual also includes a reference section that describes the syntax and
functions of the language elements of STL.

6.1.2 Basic Knowledge Required
The manual is intended for Tower LCC+Q programmers, operators, and
maintenance/service personnel.

24 Tower LCC+Q Manual Rev-b

In order to understand this manual, general knowledge of automation technology
is required.

In addition to, general computer literacy and the knowledge of other working
equipment similar to the PC and the operating systems MS Windows, Apple
macOS, or Linux, a copy of JMRI 5.6 or later is required to configure this system.

6.1.3 Segment: Conditionals
The various logic operators are entered into the segment Conditionals. The logic
is broken up into 16 logic groups. Each group contains 4 lines. Each line has room
for 63 characters. This is a total of 4,032 characters of text based logic. The only
syntax related to the line endings is that the comment operator ‘//’ is automatically
closed at the end of each line. Comment operators ‘/*’ and ‘*/’ may continue across
lines and groups.

In the example above we see a single conditional with a comment in Line 1. In line
2. there is a string of numbers that makes no sense, other than to show the
maximum number of characters allowed per line. Once you have completed the
compilation cycle (see section 6.2.3) you will see the following error code in the
syntax messages.

Tower LCC+Q Manual Rev-b 25

This consumer grade hardware and software is not intended to be used in
any part of a safety-critical system.

 Entering text into a statement line.

These error messages only check for proper syntax, with no compilation errors.
You are responsible for entering the correct logic.

6.2 The Language
The Tower LCC+Q programming language is based on a subset of the IEC 1131 IL
(Instruction List) standard as used by Siemens in their STL language. This subset
does not include any of the counters, variables (other than Boolean) nor any math
functions, (that require variables other than true/false) that are normally included
by Siemens in their version of STL.

Like any other PLC (Programmable Logic Controller) programming language, IL
languages have both benefits and drawbacks. One of the clearest benefits is
program execution speed. (efficiency) As with assembly language in general,
instruction lists are a low overhead language and execute faster than graphical
languages. Another plus is that ILs also tend to take up less memory. These are
both clear benefits, especially in a device that is tight on memory space like an
LCC node, and is the primary reason that we have chosen it. The Siemens STL is
even more compact than IL in general.

On the downside, STL is not that common of a language mainly because so many
people tend to prefer visual programming languages and environments. As a result
it is becoming less common for industrial PLC equipment.

6.2.1 The Operator Statement
Like many other programming languages, STL logic has a very limited set of
allowed operations. These are typically short hand for the logic operations that you
need to perform. Some examples are ‘O’ for ‘OR’, ‘A’ for ‘AND’, ‘N’ for ‘Not’, etc.

26 Tower LCC+Q Manual Rev-b

 Example error message

Each logic statement is started off directly with a logic operation. (A, O, or X) This
may seem a bit strange to those familiar with other languages, but this shorthand
is done to save the extra ‘Load’ command that would be required if the ‘Load’ was
not implied. Also with this format, the statement may be a continuation from a
previous statement using the previous RLO. (Result of Logic Operation) In order to
accomplish this, the previous RLO must be have been saved in the BR register by
using the ‘SAVE’ command before it is terminated.

Each statement is terminated with an ‘=’ (Assign), ‘R’ (Reset), or ‘S’ (Set)
command. Unless a ‘SAVE’ command has been done, the logic value (RLO) will
have been cleared and the next statement will begin anew.

6.2.2 The Variables
To simplify the logic processing the various logic variables are saved in arrays, or
images, in memory. Each variable only requires one bit of storage space in these
images. Of course the LCC EventIDs are much larger than this. This compression
is possible because each logic entry only has access to the values stored in this
node. Any outside references require assigning an EventID pair to each item (bit)
in the image. Inputs are controlled by Consumers, and each Output change will
Produce matching EventIDs.

You must assign
all required input
and output
variables to
matching
locations in the
input and output
variable tables
prior to their use.
Unused table
entries do not
cause any issues.
The ‘M’
(Memory)
variables are
used for
temporary
(intermediate)

storage of results, and have no associated LCC EventIDs, nor create any network
traffic.

There are 128 possible input (I) variables and 128 possible output (Q) variables
available on the Tower LCC+Q. These are grouped together 8 at a time simply for
naming convenience.

Tower LCC+Q Manual Rev-b 27

Selecting the EventIDs for Input Variable I0.0

On PLC equipment
the numbering
corresponds to
actual input and
output lines, but
that would be very
limiting in our
event driven
environment
where events can
be to/from
anyplace in the
network, not just
physical I/O lines
on a single node.

In addition to the I
and Q variables,
we have also
added ‘Y’ and ‘Z’
variables in order to transmit groups of speed information variables between
signal masts. (16 input groups, (Y) and 16 output groups. (Z)

6.2.3 The Compilation cycle
Before the logic statements you have entered can be used in the logic engine they
need to be pre-processed into a form that can be used efficiently. For example you
may have entered a jump label that is called “SAVE:”. The instruction “SAVE” is
the one that saves the logic value from one statement for use by the next
statement. We must be able to distinguish between these. The compile process
creates a table of locations in the final logic to act as targets for any jump
instructions, then removes their names from the list. This prevents them from
being confused with one another.

Another job of the compiler process is to remove all white space from the list, and
remove all comments.

Yet another job is to interpret the timer set commands and change them into actual
timing values for use by the timers.

Probably the most useful thing that the Compilation cycle does is to check that you
have used the proper syntax for your logic. Obviously it can not tell you if your
logic is correct, but it will check that you have entered variables for your
operations, that you have closing parens that match your opening ones, etc.

The compile process is run automatically each time the node is booted. The first
few errors are written to messages in the Segment: ‘Syntax Messages’. Two
EventIDs are also created, one for ‘Build Successful’ and the other for ‘Syntax
Error/s’ To read the resulting messages you must first click on [Refresh] for each
message.

For example:

28 Tower LCC+Q Manual Rev-b

Selecting the EventIDs for Output Variable Q0.0

1. Enter some logic

2. Click on [More...] → [Reboot] to trigger the compile process.

3. Click [Refresh] for Message 1 to see the result.

4. The error is someplace in Logic 1, Line 1. An
investigation reveals that the ‘Comment’
operator needs to be ‘//’ not just a single ‘/’.
Correct this and redo steps 2. - 4. to see the
results.

Tower LCC+Q Manual Rev-b 29

6.2.4 The program cycle

6.2.5 The Status Word
The Status Word is an internal register used to keep track of the state of the
instructions as they are being processed. In order to use STL more effectively it is
important to understand the Status Word and its functions. However for most basic
logic operations you do not need to worry about the status word. It will hide behind
the curtain and take care of itself.

Each bit in the Status Word has a specific function to keep track of bit logic (RLO,
STA), and whether the logic should continue, be nested or start anew (/FC, OR,
BR).

The Most Important Status Word Bits
/FC – Not First Check

If the /FC bit is a 0 then the instruction is considered to be the first instruction
being processed in a statement. If the /FC is a 1 then the instruction being scanned
will use the logic value from the previous instruction. Certain instructions like =, S
and R will set the /FC bit to 0 thus starting a new logic statement after it. Other
instructions like A or O will set the /FC bit to 1 signaling to combine the current
logic status with the next instruction.

RLO - Result of Logic Operation

The RLO bit stores the running logic state of the currently processing instructions.

30 Tower LCC+Q Manual Rev-b

Certain bit logic and comparison instruction will turn the RLO to a 1 when the
condition is TRUE and write a 0 when the condition is FALSE. Other instructions
read the RLO (=, S, R) to determine how they are to execute.

STA - Status

The STA bit reflects the state of the current Boolean address being processed.

Aditional Status Word Bits
OR

The OR bit is used for combining AND functions before OR functions.

BR - Binary Result

The Binary Result transfers the result of the operations (RLO) on to the next
instruction for reference. When the BR bit is 1 it enables the output of the block to
be TRUE and thus allow other blocks after it to be processed. The SAVE, JCB and
JNB instructions set the BR bit. This allows you to jump to another location in the
logic and continue the logic evaluation from there.

6.3 Bit Logic Instructions

6.3.1 Overview of Bit Logic Instructions
Description

Bit logic instructions work with two digits, 1 and 0. These two digits form the base
of a number system called the binary system. The two digits 1 and 0 are called
binary digits or bits. In the world of contacts and coils, a 1 indicates activated or
energized, and a 0 indicates not activated or not energized. Typical Inputs could be
block detectors or fascia contacts. Typical Outputs could be turnout positions or
signal aspects.

The bit logic instructions interpret these signal states of 1 and 0 and combine them
according to Boolean logic. These combinations produce a result of 1 or 0 that is
called the "result of logic operation" (RLO), and is usually assigned to an output or
stored in a memory location once the logic statement is complete.

These signal states are stored in arrays or process map for easy access by the logic
engine. LCC consumers (Inputs) store their resulting state in the Input (I) map
area any time they are seen. LCC producers watch the Output (Q) map and send
the appropriate EventID any time the output map value changes.

6.3.2 Boolean bit logic operators:
In these descriptions ‘<Bit>’ represents the bit variable in the process map being
tested or set by the logic operator. ‘RLO’ stands for Result of Logic Operator. In
other words it is the result of any previous operations, not an operator in the
example. A (red highlight) shows the operator position in the example. ‘/*’ and ‘*/’
are the open and close comment markers respectively.

A - And

Tower LCC+Q Manual Rev-b 31

 Format

A <Bit>

 Description

A checks whether the state of the addressed bit is "1", and ANDs the test
result with the RLO.

 Example

RLO /* Previous */ A I1.1 /* AND with Input var1.1 */ = Q4.0 /* Assign the result
to Output var4.0 */

AN - And Not
 Format

AN <Bit>

 Description

AN checks whether the state of the addressed bit is "0", and ANDs the test
result with the RLO.

 Example

RLO /* Previous */ AN I1.1 /* AND with NOT Input var1.1 */ = Q4.0 /* Assign the
result to Output var4.0 */

O - Or
 Format

O <Bit>

 Description

O checks whether the state of the addressed bit is "1", and ORs the test result
with the RLO.

 Example

RLO /* Previous */ O I1.1 /* OR with Input var1.1 */ = Q4.0 /* Assign the result
to Output var4.0 */

ON - Or Not
 Format

ON <Bit>

 Description

ON checks whether the state of the addressed bit is "0", and ORs the test
result with the RLO.

 Example

RLO /* Previous */ ON I1.1 /* OR with Input NOT var1.1 */ = Q4.0 /* Assign the
result to Output var4.0 */

X - Exclusive Or
 Format

X <Bit>

 Description

X checks whether the state of the addressed bit is "1", and XORs the test
result with the RLO.

32 Tower LCC+Q Manual Rev-b

You can also use the Exclusive OR function several times in succession. The
final result of the logic operation is "1" if an odd number of checked addresses
are "1".

 Example

RLO /* Previous */ X I1.1 /* XOR with Input var1.1 */ = Q4.0 /* Assign the result
to Output var4.0 */

XN - Exclusive Or Not
 Format

XN <Bit>

 Description

XN checks whether the state of the addressed bit is "0", and XORs the test
result with the RLO.

 Example

RLO /* Previous */ XN I1.1 /* XOR with Input NOT var1.1 */ = Q4.0 /* Assign the
result to Output var4.0 */

6.3.3 Nesting expressions:

A(- And with Nesting Open
 Format

A(

 Description

A((AND nesting open) saves the RLO and OR bits and a function code into the
nesting stack. A maximum of seven nesting stack entries are possible..

 Example

RLO /* Previous */ A(O I1.2 O M0.3) /* AND with Group (O Input 1.2 O Memory
0.3) */ = Q4.0 /*Assign the RLO to Output 4.0 */

AN(- And with Nesting Open
 Format

AN(

 Description

AN((AND NOT nesting open) saves the RLO and OR bits and a function code
into the nesting stack. A maximum of seven nesting stack entries are
possible..

 Example

RLO /* Previous */ AN(O I1.2 O M0.3) /* AND with NOT Group (O Input 1.2 O
Memory 0.3) */ = Q4.0 /*Assign the RLO to Output 4.0 */

O(- Or with Nesting Open
 Format

O(

 Description

O((OR nesting open) saves the RLO and OR bits and a function code into the
nesting stack. A maximum of seven nesting stack entries are possible..

 Example

Tower LCC+Q Manual Rev-b 33

RLO /* Previous */ O(O I1.2 O M0.3) /* OR with Group (O Input 1.2 O Memory 0.3)
*/ = Q4.0 /*Assign the RLO to Output 4.0 */

ON(- Or Not with Nesting Open
 Format

ON(

 Description

ON((Or nesting open) saves the RLO and OR bits and a function code into the
nesting stack. A maximum of seven nesting stack entries are possible..

 Example

RLO /* Previous */ ON(O I1.2 O M0.3) /* OR with NOT Group (O Input 1.2 O
Memory 0.3) */ = Q4.0 /*Assign the RLO to Output 4.0 */

X(- Exclusive Or with Nesting Open
 Format

X(

 Description

X((XOR nesting open) saves the RLO and OR bits and a function code into the
nesting stack. A maximum of seven nesting stack entries are possible..

 Example

RLO /* Previous */ X(O I1.2 O M0.3) /* XOR with Group (O Input 1.2 O Memory
0.3) */ = Q4.0 /*Assign the RLO to Output 4.0 */

XN(- Exclusive Or Not with Nesting Open
 Format

XN(

 Description

XN((XOR NOT nesting open) saves the RLO and OR bits and a function code
into the nesting stack. A maximum of seven nesting stack entries are
possible..

 Example

RLO /* Previous */ XN(O I1.2 O M0.3) /* X OR with Not Group (Input 1.2 Or
Memory 0.3) */ = Q4.0 /* Assign the RLO to Output 4.0 */

) - Nesting Closed
 Format

)

Description

) (nesting closed) removes an entry from the nesting stack, restores the OR bit,
interconnects the RLO that is contained in the stack entry with the current RLO
according to the function code, and assigns the result to the RLO. The OR bit is
also included if the function code is "AND" or "AND NOT".
Statements which open parentheses groups:

• A(And with Nesting Open
• AN(And Not with Nesting Open
• O(Or with Nesting Open

34 Tower LCC+Q Manual Rev-b

• ON(Or Not with Nesting Open
• X(Exclusive Or with Nesting Open
• XN(Exclusive Or Not with Nesting Open

 Example

RLO /* Previous */) A M1.1 /* Close Group, AND with Memory 1.1 */ = Q4.0 /*
Assign the RLO to Output 4.0 */

6.3.4 String termination:

= - Assign
 Format

= <Bit>

 Description

= <Bit> writes the content of the RLO into the addressed bit. You may make
multiple assignments of the RLO in the same statement.

 Example

RLO /* Previous */ = Q4.0 = Q4.1 = M1.0 */ Assign the RLO to Output 4.0, Output
4.1, and Memory 1.0 */

R - Reset
 Format

R <Bit>

 Description

R (reset bit) places a "0" in the addressed bit if the RLO = 1.

 Example

R M1.1 /* Reset Memory 1.1 to 0. (False) */

S - Set
 Format

S <Bit>

 Description

S (set bit) places a "1" in the addressed bit if the RLO = 1.

 Example

S M1.1 /* Set Memory 1.1 to 1. (True) */

6.3.5 Change the Result of Logic Operation (RLO):

NOT - Negate RLO

• Format

NOT

• Description

NOT negates the RLO.

Tower LCC+Q Manual Rev-b 35

• Example

NOT /* invert the RLO */ = M1.1 /* Assign RLO to Memory 1.1 */

SET - Set RLO (=1)

• Format

SET

• Description

SET sets the RLO to signal state "1".

Example

SET /* set the RLO to “1” (True) */ = M1.1 /* Assign RLO to Memory 1.1 */

CLR - Clear RLO (=0)

• Format

CLR

• Description

CLR sets the RLO to signal state "0".

• Example

CLR /* clear the RLO to “0” (False) */ = M1.1 /* Assign RLO to Memory 1.1 */

SAVE - Save RLO in BR Register

• Format

SAVE

• Description

SAVE saves the RLO into the BR bit. The first check bit /FC is not reset. For
this reason, the status of the BR bit is included in the AND logic operation in
the next network.

The use of SAVE and a subsequent query of the BR bit in the same block or in
secondary blocks is not recommended because the BR bit can be changed by
numerous instructions between the two. It makes sense to use the SAVE
instruction before exiting a block because this sets the ENO output (= BR bit)
to the value of the RLO bit and you can then add error handling of the block to
this.

• Example

SAVE /* save the RLO for use in the next statement */

6.3.6 Edge transition:

FN - Edge Negative

• Format

FN <bit>

• Description

FN <Bit> (Negative RLO edge) detects a falling edge when the RLO

36 Tower LCC+Q Manual Rev-b

transitions from "1" to "0", and indicates this by RLO = 1.

During each program scan cycle, the signal state of the RLO bit is compared
with that obtained in the previous cycle to see if there has been a state
change. The previous RLO state must be stored in the edge flag address
(<Bit>) to make the comparison. Usually a Memory variable is used for this
purpose, like M 1.0 in the example below. If there is a difference between
current and previous RLO "1" state (detection of falling edge), the RLO bit will
be "1" after this instruction

• Definition

• Example

If the programmable logic controller detects a negative edge at input M 1.0, it
energizes the output at Q 4.0 for one program scan cycle. (20mS)

FN M 1.0 /* When a Negative edge is detected at Memory 1.0 */ = Q4.0 /* Output 4.0
is set to true for one logic cycle */

FP - Edge Positive

• Format

FP <bit>

• Description

FP <Bit> (Positive RLO edge) detects a rising edge when the RLO transitions
from "0" to "1", and indicates this by RLO = 1.

• Example

If the programmable logic controller detects a positive edge at input I 1.0, it
energizes the output at Q 4.0 for one program scan cycle. (20mS)

FP M 1.0 /* When a Positive edge is detected at Memory 1.0 */ = Q4.0 /* Output
4.0 is set to true for one logic cycle */= Q4.0

Tower LCC+Q Manual Rev-b 37

FP M1.1 A I 0.1 S Q1.1

// The RLO will go true if Input 0.1 is positive when the positive edge of Memory 1.1
happens. If so, then Output Q 1.1 will be set to true;

// If Input 0.1 is negative, when the positive edge of Memory 1.1 happens, then the RLO will
remain negative. and nothing happens.

6.4 Logic Control

6.4.1 Overview of Logic Control Instructions
Description:

You can use the Jump instructions to control the flow of logic, enabling your
program to interrupt its linear flow to resume scanning at a different point.

The address of a Jump instruction is a label. A jump label may be as many as four
characters, and the first character must be a letter. Jump labels are followed with a
mandatory colon ":" and must precede the program statement in the line being
jumped to. (the jump label must not be somewhere in the middle of a logic string)
We intentionally restrict any jump instructions to be in a forward direction in the
logic to prevent accidental endless looping.

Note:

Please note that the jump destination always forms the beginning of a Boolean
logic string in the case of jump instructions. The jump destination must not be
placed in the middle of a logic string.

6.4.2 The Jump Instructions
You can use the following jump instructions to interrupt the normal flow of your
program unconditionally:

JU - Jump Unconditional

• Format

JU <jump label>

38 Tower LCC+Q Manual Rev-b

• Description

JU <jump label> interrupts the linear program scan and jumps to a jump
destination, regardless of the status word contents. The linear program scan
resumes at the jump destination. The jump destination is specified by a jump
label. Only forward jumps are possible by design to prevent looping.

• Example

JU EXIT /* Jump Unconditional to EXIT. */ APPR: SET Q 1.1 /* The Intermediate
Operations are ignored */ EXIT: /* Operations continue at EXIT: */

The following jump instructions interrupt the flow of logic in your program based
on the result of a logic operation (RLO) produced by the previous instruction
statement:

JC - Jump if RLO=1

• Format

JC <jump label>

• Description

If the result of logic operation is 1, JC <jump label> interrupts the linear
program scan and jumps to a jump destination. The linear program scan
resumes at the jump destination. The jump destination is a specified jump
label. Only forward jumps are possible.

If the result of logic operation is 0, the jump is not executed. The RLO is set to
1, and the program scan continues with the next statement.

• Example
RLO /* Previous True */ JC STOP /* If RLO is true Jump Conditional to STOP: */
AN I 1.2 /* If RLO was false continue at */ JC APPR /* Jump Conditional to
APPR: */ STOP: SET Q 1.0 JU EXIT /* Set aspect to Stop then Exit */ APPR:
SET Q 1.1 EXIT: /* Set aspect to Approach then Exit */

JCN - Jump if RLO=0

• Format

JCN <jump label>

• Description

If the result of logic operation is 0, JCN <jump label> interrupts the linear
program scan and jumps to a jump destination. The linear program scan
resumes at the jump destination. The jump destination is specified a jump
label. Only forward jumps are possible.

If the result of logic operation is 1, the jump is not executed. The program
scan continues with the next statement.

Example
RLO /* Previous NOT True */ JCN APPR /* Jump Conditional to APPR: */ STOP: /*
If previous was true */ SET Q 1.0 /* Set aspect to Stop then Exit */ JU EXIT
APPR: SET Q 1.1 /* Set aspect to Approach then continue to Exit */ EXIT:

Tower LCC+Q Manual Rev-b 39

Note the change from the previous example where the conditional had to be inverted before
checking in order to check for the inverted sense.

JCB - Jump if RLO=1 with BR

• Format

JCB <jump label>

• Description

If the result of logic operation is 1, JCB <jump label> interrupts the linear
program scan and jumps to a jump destination. The linear program scan
resumes at the jump destination. The jump destination is specified by a jump
label. Only forward jumps are possible.

If the result of logic operation is 0, the jump is not executed. The RLO is set to
1, and the program scan continues with the next statement.

Independent of the RLO, the RLO is copied into the BR for the JCB <jump
label> instruction.

• Example
A I 1.0 A I 1.2 JCB STOP AN I 1.2 JCB APPR STOP: SET Q 1.0 JU
EXIT APPR: SET Q 1.1 EXIT:
AND I 1.0 AND I 1.2 Jump Conditional with BR to STOP:. AND NOT I 1.2 Jump Conditional with
BR to APPR:. STOP: Set Q 1.0 Jump Unconditional to EXIT. APPR: Set Q1.1. EXIT:

JNB - Jump if RLO=0 with BR

• Format

JNB <jump label>

• Description

If the result of logic operation is 0, JNB <jump label> interrupts the linear
program scan and jumps to a jump destination. The linear program scan
resumes at the jump destination. The jump destination is specified a jump
label. Only forward jumps are possible.

If the result of logic operation is 1, the jump is not executed. The RLO is set to
1 and the program scan continues with the next statement.

Independent of the RLO, the RLO is copied into the BR for the JNB <jump
label> instruction.

• Example
A I 1.0 A I 1.2 JC STOP A I 1.2 JNB APPR STOP: SET Q 1.0 JU EXIT
APPR: SET Q 1.1 EXIT:
AND I 1.0 AND I 1.2 Jump Conditional to STOP:. AND I 1.2 Jump Conditional Not with BR to
APPR:. STOP: Set Q 1.0 Jump Unconditional to EXIT. APPR: Set Q1.1. EXIT:

Note the change from the previous example where the conditional had to be inverted before
checking in order to check for the inverted sense.

The following jump instructions interrupt the flow of logic in your program based
on the signal state of a bit in the status word:

40 Tower LCC+Q Manual Rev-b

JBI - Jump if BR=1

• Format

JBI <jump label>

• Description

If status bit BR is 1, JBI <jump label> interrupts the linear program scan and
jumps to a jump destination. The linear program scan resumes at the jump
destination. The jump destination is specified by a jump label. Only forward
jumps are possible.

If the status bit is 0, the jump is not executed. The RLO is set to 1 and the
program scan continues with the next statement.

• Example
A I 1.0 A I 1.2 JBI OVER AN I 1.2 SET Q 1.0 JU OVER:
AND I 1.0 AND I 1.2 Jump if BR =1 to OVER:. AND Not I 1.2 Set Q 1.0 Jump Unconditional to OVER.

JNBI - Jump if BR=0

• Format

JNBI <jump label>

• Description

If status bit BR is 0, JNBI <jump label> interrupts the linear program scan
and jumps to a jump destination. The linear program scan resumes at the
jump destination. The jump destination is specified by a jump label. Only
forward jumps are possible.

If the status bit is 1, the jump is not executed. The RLO is set to 1 and the
program scan continues with the next statement.

Example
A I 1.0 A I 1.2 JNBI OVER AN I 1.2 SET Q 1.0 JU OVER:
AND I 1.0 AND I 1.2 Jump if BR =0 to OVER:. AND Not I 1.2 Set Q 1.0 Jump Unconditional to OVER.

6.5 Logic Variables
Variables as we use the term here refer to individual locations in memory that can
store one of two values, true or false. (1/0, on/off, normal/reverse, etc.) In
computer science this is called Boolean logic. With the exception of Timers (T) we
never give variables any value other than zero and one.

6.5.1 Overview of different STL variable types
• I – Input (Consumer)

• Q – Output (Producer)

• Y – Track Receiver

• Z – Track Transmitter

• M – Local Memory

Tower LCC+Q Manual Rev-b 41

• T – Timer

External Input (I) and Output (Q) variables are linked to LCC EventIDs by using
two segments of the CDI.

and

In a similar manner Track Circuit Receivers (Y) and Track Circuit Transmitters (Z)
are linked to external Event ID groups by using two segments of the CDI. Each link
connects together a group of 8 EventIDs, typically variables from one mast sent to
the logic of another adjacent mast.

Local (internal) Memory (M) variables may be used as required in your logic.
Because there is no link from memories to external objects there is no need to
define them in terms of EventIDs in the CDI. If a ‘memory’ item is needed in
another node, then use ‘I’ or ‘Q’ which do link to other locations using EventIDs
over the network, or else assign them to to a ‘Q’ variable as well.

In like manner Timers (T) are directly created in the logic by defining and using
them, but are not visible outside of the logic engine. To use them on the network
you must assign them to to a ‘Q’ variable as well to make them visible. Remember
that the ‘Network’ includes I/O lines on this node as well as items on other nodes.

6.5.2 Logic Operation
The logic table itself is re-calculated every 20ms on a continuously repeating basis.
However Logic Outputs (producers) only result in EventIDs being sent out if they
change from their previous state. This logic re-calculation is not dependent upon,
nor is it synchronized with any EventIDs changing. This is an important difference
between this logic and the previous logic as used in older versions of our RR-
CirKits nodes.

One effect of this is that you are not guaranteed to be able to notice brief changes
in external events. If an event changes, then is restored in less than 20ms, then the
change may be missed entirely by the logic. In a similar manner any change will
not be noticed by the logic for as long as 20ms after it appears on the network.
Normally in the scale of time used on our layouts this is not an issue, but it is
something to be aware of. For example, if you are calculating train direction by
using sensor pairs, then the sensors need to be spaced far enough apart to give
longer than 20ms between activation at the highest train speeds allowed.

42 Tower LCC+Q Manual Rev-b

6.5.3 Segment: Logic Inputs
The logic inputs (LCC Consumers) take the shorthand form of “I0.0” where each
input item is identified by a group number followed by an item number. This
shorthand form is what is used in the logic statements when calculating logic
functions. Block occupancy sensors, push buttons, and turnout position contacts
are some examples of inputs. “I” (input) variables are typically used for external
inputs, but not necessarily limited to these. Normally you would not assign (=)
values to inputs because they are Consumers and will not be written back to the
network.

EventIDs into Logic Inputs

Each logic input has two EventIDs associated with it, one to set it ‘true’ and the
other to set it ‘false’. It also has the option of assigning a user name, and using the
[Make Sensor] or [Make Turnout] to add the item into the JMRI tables.

External actions as seen on the LCC bus can change the states of these items. The
resulting values are stored in the node for use by the logic.

6.5.4 Segment: Logic Outputs
The logic outputs (LCC Producers) take the shorthand form of “Q0.0” where each
output is identified by a group number followed by an item number. This shorthand
form is what is used in the logic statements as outputs from calculating logic
functions. Signal aspects, turnout positions, and relay controls are typical outputs
that you may have. “Q” (output) variables are typically used to control external
devices, but are not necessarily limited to these.

Tower LCC+Q Manual Rev-b 43

Each logic output has two EventIDs associated with it, one is produced when it is
set to ‘true’ and the other when it is set to ‘false’. It also has the option of
assigning a user name, and using the [Make Sensor] or [Make Turnout] to add the
item into the JMRI tables.

When ever these items change state as a result of logic operations, then the
changes are sent to the LCC bus in the form of EventIDs that may change the state
of other items on the layout. These resulting values are also stored in the node and
may be used by the logic for further calculations. For example if some logic
calculates a turnout position (Q0.0) it will be sent out to the network to move the
turnout. That same item (Q0.0) may also be checked by another logic section in the
same (or other) node that is calculating a signal aspect.

6.5.5 Segment: Track Receiver
The Track Receiver (LCC Consumers) take the shorthand form of “Y0.0” where
each Track Circuit takes the form of an 8 item group connecting one signal mast to
another. The first digit is the track “Circuit” receiver number and the second digit
is the associated track speed number. When using these values within a logic
statement you manually add the “.0”, etc. to indicate the desired speed. The
shorthand example above “Y0.0” means track circuit “Receiver Zero is Stop”. (see
below for suggested speed values)

44 Tower LCC+Q Manual Rev-b

Logic Outputs into EventIDs

To the left we see the prototype speed
associations. For simplicity and to fit
into our available numbering system we
can use:

0. Stop (*not in the prototype set)
1. Approach Medium
2. Approach
3. Approach Limited
4. Advance Approach
5. Approach Slow
6. Accelerated Tumble Down
7. Clear

*Because the rails are shorted by the
train and no messages can be received.

This suggested numbering and their
associated speed values are arbitrary,

and you may use any order and values that you need. (for any purpose)

On the prototype, ‘track circuits’ are a way to send speed information from one
signal mast to another over the rails themselves. For our purposes track circuits
are a shorthand way to link speed data from one mast to another by setting a
single EventID value. Because track circuits primarily send speed values they
operate as a group, with only one value being true at a time. Setting any speed to
true using its Track circuit Transmitter number will automatically set all other
speed values for the same track circuit to false. The prototype has no “Stop” speed
value because if the block is occupied (Stop) then the circuit is shorted out and
thereby disabled. We needed a value that corresponds to this and have added
“Stop” to the set. The actual speed values for each aspect name are a function of
your railroad’s rule book.

Tower LCC+Q Manual Rev-b 45

Track Circuit Input Link EventID

6.5.6 Segment: Track Transmitter
The Track Transmitter (LCC Producers) take the shorthand form of “Z0.0” where
each Track Circuit takes the form of an 8 item group connecting one signal mast to
another. The first digit is the track circuit transmitter number and the second digit
is the associated track speed number to be sent. When using these values within a
logic statement you simply add the “.0”, etc. to indicate the desired speed being
sent. The shorthand example above “Z0.0” means track circuit “Transmitter Zero
is Stop”.

The “Link Address” value shown for each track circuit transmitter is a read only
value. Use [Copy] to grab this value and then [Paste] to place the value into the
track circuit receiver that is being used by the previous mast. If you assign user
names to each circuit and use the “Sensor/Turnout creation” tool to save them in
JMRI, then you can use the search tool when creating these links.

6.5.7 Memory Variables
The STL logic includes local memory variables to allow information to be saved
and/or exchanged between different logic items. The only values saved are ‘True’
or ‘False’. These local memory variables take the shorthand form of “M0.0” where
each variable is simply entered as required. You will need to keep track of these by
yourself. We support 128 memory variables labeled from “M0.0” to “M15.7” By the
term “Local Variable” it means that any information being stored is only accessible
to the logic engine itself. This information is not visible outside of the node. It can
only be assigned and/or evaluated by the logic within a single node. (Actually any
shorthand entry is only visible to the logic within a single node.) In order for a
shorthand entry to be seen outside of the logic engine itself, you must create a
“Logic Output” (Q) entry to create matching EventID entries in order to place the
information onto the LCC Bus. This is even true when referencing the I/O ports on
the Tower LCC+Q node itself. All of the LCC EventIDs are outside of the logic
engine itself.

46 Tower LCC+Q Manual Rev-b

Track Circuit Output Link EventID

6.5.8 Timer Variables

Our version of STL logic includes 64 timers to create logic delays for various
purposes. Timer labels take the form of “T0” to T63”. Note that flashing outputs or
pulses are created by the I/O lines themselves and do not rely on these logic timers
for their operation.

Load value. You must pre-load a value for use by a timer using the L instruction
immediately prior to starting it. W#t#xyz is the format of the value where ‘W’ is a
16 bit Word, formed of '#t' = the time base (that is, the time interval or resolution)
and '#xyz' = the time value in decimal format. For example, L W#0#10 = 100MS.
The ‘L<value>’ always precedes a ‘Start Timer’ instruction. (SD, SE, SF, SP, SS)
The following timer instructions relate to timers:

Overview of Timer Instructions

Memory and components of a Timer.

The following timer instructions are available:

• FR Enable Timer (Free)

• R Reset Timer

• SD On-Delay Timer

• SE Extended Pulse Timer

• SF Off-Delay Timer

• SP Pulse Timer

• SS Retentive On-Delay Time

FR Enable Timer (Free)

• Format

FR <timer>

• Description

When the RLO transitions from "0" to "1", FR <timer> clears the edge-
detecting flag that is used for starting the addressed timer. A change in the
RLO bit from 0 to 1 in front of an enable instruction (FR) enables a timer.

Note: FR (Timer enable) is not required to start a timer, nor is it required for
normal timer instruction. An enable is used only to re-trigger a running timer,
that is, to restart a timer. The restarting is possible only when the start
instruction continues to be processed with RLO = 1.

Example
A I 2.0 FR T1 A I 2.1 L W#2#10 SP T1 A I 2.2 R T1 A T1 = Q 4.0
AND I 2.0 Enable T1, And I 2.1 Load 10 seconds Start Pulse T1 AND I 2.2 Reset Load timer into Q 4.0

Tower LCC+Q Manual Rev-b 47

(1) A change in the RLO from 0 to 1 at the enable input while the timer is running
completely restarts the timer. The programmed time is used as the current time for
the restart. A change in the RLO from 1 to 0 at the enable input has no effect.

(2) If the RLO changes from 0 to 1 at the enable input while the timer is not
running and there is still an RLO of 1 at the start input, the timer will also be
started as a pulse with the time programmed.

(3) A change in the RLO from 0 to 1 at the enable input while there is still an RLO
of ‘0’ at the start input has no effect on the timer.

R Reset Timer

• Format

R <timer>

• Description

R <timer> stops the current timing function and clears the timer value and
the time base of the addressed timer word if the RLO transitions from 0 to 1.

Example
RLO /* Previous RLO True */ R T1
Check the signal state of previous. If RLO transitioned from 0 to 1, then Reset timer T1.

SP Pulse Timer

• Format

SP <timer>

• Description

SP <timer> starts the addressed timer when the RLO transitions from "0" to
"1". The programmed time elapses as long as RLO = 1. The timer is stopped if
RLO transitions to "0" before the programmed time interval has expired.

This timer start command expects the time value and the time base to be
loaded prior to starting the timer.

Example
RLO /* Previous RLO True */ L W#2#10 SP T1 A T1 = Q 4.0
Load 10 seconds then Start Pulse T1 AND T1 Load timer status into Q 4.0

SE Extended Pulse Timer

48 Tower LCC+Q Manual Rev-b

Timer Enable trigger description t = programmed time interval

• Format

SE <timer>

• Description

SE <timer> starts the addressed timer when the RLO transitions from "0" to
"1". The programmed time interval elapses, even if the RLO transitions to "0"
in the meantime. The programmed time interval is started again if RLO
transitions from "0" to "1" before the programmed time has expired.

This timer start command expects the time value and the time base to be
loaded prior to starting the timer.

Example
RLO /* Previous RLO True */ W#2#10 SE T1 A T1 = Q 4.0
Load 10 seconds then Start Extended Pulse T1 AND T1 Load timer status into Q 4.0

SD On-Delay Timer

• Format

SD <timer>

• Description

SD <timer> starts the addressed timer when the RLO transitions from "0" to
"1". The programmed time interval elapses as long as RLO = 1. The time is
stopped if RLO transitions to "0" before the programmed time interval has
expired.

This timer start command expects the time value and the time base to be
loaded prior to starting the timer.

Example
RLO /* Previous RLO True */ L W#2#10 SD T1 A T1 = Q 4.0
Load 10 seconds then Start On-Delay T1 AND T1 Load timer status into Q 4.0

SS Retentive On-Delay Timer

• Format

SS <timer>

• Description

SS <timer> (start timer as a retentive ON timer) starts the addressed timer
when the RLO transitions from "0" to "1". The full programmed time interval
elapses, even if the RLO transitions to "0" in the meantime. The programmed
time interval is re-triggered (started again) if RLO transitions from "0" to "1"
before the programmed time has expired.

This timer start command expects the time value and the time base to be
loaded prior to starting the timer.

Example
RLO /* Previous RLO True */ L W#2#10 SS T1 A T1 = Q 4.0
Load 10 seconds then Start Retriggerable On-Delay T1 AND T1 Load timer status into Q 4.0

SF Off-Delay Timer

• Format

Tower LCC+Q Manual Rev-b 49

SF <timer>

• Description

SF <timer> starts the addressed timer when the RLO transitions from "1" to
"0". The programmed time elapses as long as RLO = 0. The time is stopped if
RLO transitions to "1" before the programmed time interval has expired.

This timer start command expects the time value and the time base to be
loaded prior to starting the timer.

Example
RLO /* Previous RLO True */ L W#2#10 SF T1 A T1 = Q 4.0
Load 10 seconds then Start Off-Delay T1 AND T1 Load timer status into Q 4.0

6.5.9 Timer details.
Format of the L <value> instruction L W #t #xyz

L W (Load Word) = Loads the following values into a 16bit register.

#t = The time base defines the interval at which the time value is decremented by
one unit. Only one of the following 4 single digit values is allowed.

Time Base #t numeric values for intervals

Time base Interval Resulting Timer Range
0 10 MS 10MS to 9S 990MS
1 100 MS 100MS to 1M 39S 900MS
2 1 S 1S to 16M 39S
3 10 S 10S to 2H 46M 30S

#xyz = The multiplier determines the desired number of intervals during the time
setting. Each of the x, y, and z entries represents a single digit. Leading zeros are
ignored. The minimum value is 1, and maximum value is 999.

Example time value settings:

L W#0#500 = 5 seconds (10MS x 500)
L W#1#50 = 5 seconds (100MS x 50)
L W#2#5 = 5 seconds (1 second x 5)
L W#3#5 = 50 seconds (10 seconds x 5)

For even seconds use 1S or 10S intervals because they take up less statement
space. For fractional seconds use a smaller interval such as 100MS. E.g. LW#1#45
will give you a 4.5 second timer. For longer timers convert the desired time into 1
second or 10 second intervals. Example: 8 minutes equals 480 one second
intervals, or 48 ten second intervals. The time entry for 8 minutes could therefore
be written as either LW#2#480 or LW#3#48. It may not be written as LW#1#4800 nor
as LW#0#48000 because #xyz may not exceed 999 intervals.

Choosing the right Timer
Following the loading of the desired timing value you must immediately Start the

50 Tower LCC+Q Manual Rev-b

type of timer you need.

This overview is intended to help you choose the right timer for your timing job.
The available Start types are:

Pulse Type Visual Description Description

Trigger
value
I 1.0

Duration t of trigger signal I 1.0 is
shown with gray background.

SP
Pulse Timer

The time that the output signal
remains at 1 is the programmed time
value t, unless the trigger signal
returns to 0 before the end of time t.
In that case the output signal
immediately returns to 0.

SE
Extended
pulse timer

The output signal remains at 1 for the
programmed length of time t,
regardless of how long the input
trigger signal stays at 1.

SD
On-delay
timer

The output signal changes to 1 only
when the programmed time t has
elapsed and the input trigger signal is
still 1. If the input signal is shorter
than time t, then no pulse will occur.

SS
Retentive on-
delay timer

The output signal changes from 0 to 1
only after the programmed time t has
elapsed, regardless of how long the
input signal trigger stays at 1.

SF
Off-delay
timer

The output signal changes to 1 when
the input trigger signal changes to 1
or while the timer is running. The
time t is started when the input
trigger signal returns from 1 to 0.

The start format is SD T3 where the timer type is followed by the timer number.
The Start timer instruction loads the previously loaded <value> into the timer and
starts it running.

Example statement for starting an 8 minute elapse timer using Timer 3 with the
trigger of I1.0:
A I1.0 L W#2#480 SE T3

Example statement for checking the timer status and placing it in Q4.0:
A T3 = Q4.0

Adding the FR ‘Timer Reset’ instruction e.g. A I1.5 FR T3 anywhere in the logic
string will reload timer T3 with its preset value of W#2#480 when Input 1.5
transitions from "0" to "1", presuming that timer T3 is still running, and Input 1.0
is still at "1", otherwise it will have no effect.

Tower LCC+Q Manual Rev-b 51

6.6 STL Logic Operators

6.6.1 Supported instruction Mnemonics

Mnemonic Element type Description
L:
La:
Lab:
Labl:
L1: etc.

Jumps The address of a Jump instruction is a label. A jump label
may be as many as four characters, is case sensitive,
and the first character must be a letter. Jumps labels are
followed with a mandatory colon ":" and must precede
the program statement in a line.
Note: the jump destination always forms the beginning
of a Boolean logic string in the case of jump instructions
(the jump label must not be somewhere in the middle of
a logic string).

= Bit logic Instruction Assign
// Format Open Line Comment - The ‘//’ comment is automatically

closed at the end of its statement line.
/* Format Open Comment - The ‘/*’ comment is not automatically

closed at the end of its statement line. It must always be
closed by using the ‘*/’.

/ Format Close Comment - The ‘/’ comment may be used with ‘/*’
to hide a single operator or multiple statement lines.

) Bit logic Instruction Nesting Closed
A Bit logic Instruction And
A(Bit logic Instruction And with Nesting Open
AN Bit logic Instruction And Not
AN(Bit logic Instruction And Not with Nesting Open
CLR Bit logic Instruction Clear RLO (=0)
FN Bit logic Instruction Edge Negative
FP Bit logic Instruction Edge Positive
FR Timers Enable Timer (Free)
JBI Jumps Jump if BR = 1
JC Jumps Jump if RLO = 1
JCB Jumps Jump if RLO = 1 with BR
JCN Jumps Jump if RLO = 0
JNB Jumps Jump if RLO = 0 with BR
JNBI Jumps Jump if BR = 0
JU Jumps Jump Unconditional
L <value> Value Load value. You can pre-load a value for use by a timer

using the L instruction. W#t#xyz is the format of the
value where ‘W’ is a 16 bit Word, formed of '#t' = the time
base (that is, the time interval or resolution) and '#xyz' =
the time value in decimal format. For example, L
W#0#10 = 100MS. The ‘L<value>’ always precedes a
Start Timer instruction.

NOT Bit logic Instruction Negate RLO
O Bit logic Instruction Or
O(Bit logic Instruction Or with Nesting Open
ON Bit logic Instruction Or Not
ON(Bit logic Instruction Or Not with Nesting Open
R Bit logic / Timer Reset
S Bit logic Instruction Set
SAVE Bit logic Instruction Save RLO in BR Register
SD Start Timer On-Delay Timer
SE Start Timer Extended Pulse Timer
SET Bit logic Instruction Set
SF Start Timer Off-Delay Timer
SP Start Timer Pulse Timer
SS Start Timer Retentive On-Delay Timer

52 Tower LCC+Q Manual Rev-b

X Bit logic Instruction Exclusive Or
X(Bit logic Instruction Exclusive Or with Nesting Open
XN Bit logic Instruction Exclusive Or Not
XN(Bit logic Instruction Exclusive Or Not with Nesting Open

Tower LCC+Q Manual Rev-b 53

7 Track Circuits
The prototype railroads have the need to send signal indication information from
one signal to the next in order to calculate the proper aspects to display. These
calculations are done locally, not at the dispatcher's office, nor by some central
computer. This indication information can be sent over local wires from one signal
to the next, but that means lots of infrastructure to maintain. Fortunately there is
always one pair of conductors that already need power on them for detection
circuits and that automatically go to the right place. That pair of conductors is the
rails themselves. Even from the earliest semaphore days some basic indication
information was passed over the rails simply by switching the polarity of the
battery feeding the DC track circuit being fed from one end of a block to the other.

As signaling became more complex and speed signaling was introduced, there was
a need to pass more information over the same two rails. Genrakode® and
Electrocode® are two brands of equipment that do this by sending a series of
pulses rather than just the DC polarity from one end of the block to the other.
These circuits are normally bi-directional, so the transmit and receive circuits
switch from one direction to the other every few seconds.

We are not actually using the rails, so we do not have that limitation, and can send
information immediately in both directions.

7.1 Simulating a Code Line with Events
To send this indication information from signal to signal over the usual EventIDs is
difficult because each link needs to be specifically made using different EventID
numbers for each indication. That makes it difficult or impossible to determine
ahead of time what all the EventID numbers will be required, especially for a
modular setup.

One solution to this dilemma is to use events in a way similar to those used in
coded track circuits and then allow nodes to learn these groups of internally
generated events simply by using the CDI tools to change a few entries.

These internal event groups are then translated into normal user programmable
EventIDs for use in Logic and connections with other nodes and panels. To link up
these connections at a modular meet the operators would simply link the signal
nodes at each side of a module boundary to create these virtual groups of links
automatically.

7.2 Linking Virtual Code Lines
To link these virtual code circuits use the CDI to copy the key from one track
circuit to another. The EventID for the TX code set will always come from the
transmitting node and be entered into the receiving node to avoid accidental reuse
of EventID numbers from show to show.

54 Tower LCC+Q Manual Rev-b

Each node can setup one or more virtual code lines to any other node. For
simplicity these virtual links are named 'Track 1', ‘Track 2’, etc. It is incumbent
upon the user to keep track of which 'Coded' virtual links are created between
nodes. Be sure to record which block (1-8) is used for each side of the virtual links
if you have not standardized these connections. There is no need to use the same
'block' number on both sides of any virtual coded track circuits, and in fact they
will not normally be matching. Normally these virtual links will follow along with
the rails, but there is no actual requirement that they do so.

7.3 Prototype Code Line
In our solution to this problem we follow
the prototype with a few changes. When
each prototype code is sent onto the rails
there are four data items simultaneously
sent in each packet. They are the ‘Start’
bit, (1) the 'Speed' or 'Indication' code, (2,
3, 4, 6, 7, 8, or 9), the '5' code, (5) and the
'M' code. (M) In order to make this
solution more 'EventID' friendly we
represent each code with two events, one
to turn it on and the other to turn it off.
This allows us to ignore the ‘Start’ bit and
send any changes immediately.

Note: the prototype can only send
indications via an unoccupied block,
because the train itself is shorting the rails going toward the signal ahead when it
is occupied. On the model we do not have that restriction.

We can send either ‘Stop’ (5) or ‘Tumble down’ (6) as an indication. This simplifies
the coding of APB signals.

To limit the number of indication EventIDs to 16 we have omitted the ‘M’ code as
being unnecessary.

Tower LCC+Q Manual Rev-b 55

Example Prototype Code Line Values

8 ABS and APB Signal plus
other examples

For examples of using logic to control signals see the Signal LCC manual. The
Tower LCC+Q logic may be used to expand a Signal LCC logic table if more
statements are required. To be determined.

56 Tower LCC+Q Manual Rev-b

9 Tower LCC+Q compatible
Input/Output Cards

The RR-CirKits Tower LCC+Q and its compatible I/O modules are designed to be
clipped into Tyco 3-1/4" Snap-Track® mounted to the bench work. (Snap-Track®
is a plastic channel designed to mount PC cards to a chassis, not something to run
trains on.)

A single Tower LCC+Q or compatible I/O module fits into the 3TK2-1 (single)
mounting track. Other widths are available for compact installations using multiple
boards.

Each I/O module is equipped with two connectors to facilitate these I/O board
connections. Use IDC connectors and ribbon cables to connect the Tower LCC+Q
to the I/O cards.

9.1 BOD-4 (DCC Block Occupancy Detector - 4 block plus 4 I/O)

This board operates as a DCC block occupancy detector for 4
blocks using remote CT coils. It outputs logic levels, and has a
RR-CirKits standard ribbon connector interface. The "Power-Lok"
feature optionally monitors the DCC bus power. A power failure

latches the detection status of each block until power is restored and re-stabilized.
There are also 4 general purpose I/O connections fed through to the driver board.

9.2 BOD4-CP (DCC BOD 4 block, 4 Inputs, plus 2 turnout drivers)

This board operates as a DCC occupancy detector for 4 blocks
using remote CT coils. It outputs logic levels, and has a RR-
CirKits standard ribbon connector interface. The "Power-Lok"
feature optionally monitors the DCC bus power. A power failure

latches the detection status of each block until power is restored and re-stabilized.
The CP version also includes dual turnout drivers. When used with the Tower
LCC+Q or Signal LCC boards there are also 4 general purpose I/O connections
available using the Sample options.

9.3 BOD-8 (DCC Block Occupancy Detector - 8 block)

The BOD-8 does not expect you to re-wire your layout to bring
track feeders to the detector cards. The small CT (Current
Transformer) detection coils are placed directly on the track
feeders where they belong. Simple lengths of Cat-5 cable are the
usual way to run the signals back to the detector boards. Use of

CT coils means that there are no track voltage losses associated with the
detectors. Normal detection levels are 1mA. but may be adjusted to higher levels
with on board pots.

Tower LCC+Q Manual Rev-b 57

During a DCC bus power failure the Power-Lok input on the BOD-8 instantly locks
the current state of each block detector. I.e. the state of the layout does NOT
change during a DCC power outage, neither to all occupied, nor to all vacant. It
just suspends sending any occupancy changes until after power is restored and
things have stabilized again. If you do not want the feature there is a jumper to
disable it.

The BOD-8 outputs are low during detection so the Tower LCC+Q should be
configured accordingly.

It is planned to build a ‘Detector LCC’ board that will combine the LCC interface
and a detector card.

9.4 OIB-8 (Opto Isolator Board - 8 input)

This 8 input board is used when a non-isolated source of voltage
needs to be monitored and input to the Tower LCC. One example
would be to monitor the DCC voltage on a set of points to
determine the position of a turnout without using auxiliary
contacts.

This board may be configured to monitor the absence or presence of an AC or DC
signal. This board requires 10mA. for reliable operation and includes built in
current limiters.

9.5 SCSD-8 (Single Coil Solenoid Driver)

The SCSD-8 Output Module is designed to drive individual
solenoid coils or other high voltage high power devices. Normally
the input voltage should not exceed 27VDC. The SCSD-8 board is
optically isolated from the driving circuitry to protect the Tower
LCC+Q or other control device from the high power outputs. When
driving single coils or high power loads configure the line as a

steady output.

By using the proper options on the Tower LCC+Q the SCSD-8 may also be used to
control dual coil momentary switch machines. In 'Dual Coil' mode the output lines
must be paired such that the pair of lines requires just single address pair.
However reverse the two EventIDs. This action will normally require a 0.1 second
pulse when driving solenoids.

The lines are paired and only the primary event of the first line of each pair will be
used to trigger a pulse.

Dual coil operation should not be attempted if the switch machine power supply is
not of the capacitive discharge type that will limit the long term current to a low
value in case of hardware or configuration errors.

Failure to observe this precaution may result in destruction of equipment
and be a fire hazard!

58 Tower LCC+Q Manual Rev-b

9.6 SMD-8 (Stall Motor Driver – 8 line)

The SMD-8 board contains 8 individual, optically isolated, H-
Bridge drivers. This allows the board to be powered from any
supply between 9 Volts and 27 Volts. It is primarily designed to
drive stall motor turnout machines such as those found in
Tortoise® and Switchcraft® machines . Do not exceed 20VAC or
27VDC at the power input.

This board includes an adjustable buck switching regulator to allow you to control
the speed of your switch machine motors. This regulator can not boost the drive
voltage above the supply voltage.

9.7 RB-4 (Relay Board - 4 x SPDT)

Relay Board - 4 is a Quad 10A SPDT relay board with logic level
drivers. It is suitable for use with Tower LCC+Q or other logic
level output devices. It requires 12V auxiliary power to drive the
relay coils. Auxiliary power is optically isolated from the logic
inputs for double isolation. LED indicators for each relay make it
easy to monitor activity.

Includes dual ribbon connectors with offset lines to allow easy connection as
output 1-4, or output 5-8, of the Tower LCC, or other driver.

The RB-4 input lines are active low so all lines on this Tower LCC+Q port should
be configured appropriately. This inverted input mode matches most types of
driver outputs, and the drive polarity may be easily switched either in the Tower
LCC+Q configuration or by reversing the RB-4 output contacts.

9.8 RB-2 (Dual DPDT Relay Board)

This board is a convenient way to reverse track polarity by using
logic in place of Auto Reverse devices. In many cases track
polarity may be calculated. In these cases using a DPDT relay is
more cost effective and easier on the equipment. Some examples
include the tail track of a simple “Y” and the turnout feeding a

reverse loop. In both of these cases the required polarity change follows the
turnout position.

9.9 BOB-S (Break Out Board – Screw Terminal)

This board is a convenient way to convert from 10 pin
ribbon cable to screw terminals. It may be used for inputs
or outputs.

Do not exceed 5V on any input or output or the Tower LCC+Q will be damaged.

Tower LCC+Q Manual Rev-b 59

The BOB-S may be mounted to a panel or stringer using #4 or smaller screws and
spacers.

60 Tower LCC+Q Manual Rev-b

10 Trouble shooting

10.1 Sanity Test
To perform a very basic Tower LCC+Q sanity test perform the following steps:

• Power up the Tower LCC+Q by plugging it into a powered network.
• The green power LED should come on.
• Once the node powers up it will briefly flash its Blue, Gold, and Red LEDs as

it reports its status to the network.
• The previous output states should be automatically be restored.

If the green power LED does not light, be sure that a power supply is connected to
the LCC network segment, and provides at least 7.5V to the Tower LCC. The green
power LED itself will initially light at much lower voltages, so it is not a reliable
indicator of suitable power.

10.2 Activity Test
The Tower LCC's input circuit and code sends data directly to the unit's processor,
so if you send any command to the unit it should immediately be seen on the
actuator (ACT) LED. This test uses the free software available from the JMRI
project to watch the test commands. (www.jmri.org)

Steps:
• Open the JMRI LCC® Monitor window. Using the JMRI turnout control send

a command to any output line on this Tower LCC. The command should
appear in the LCC® monitor window and the Tower LCC+Q command (Y)
LED should blink.

• The connected output should respond.

If there is activity at the LCC Terminator blue LED, but no activity light at the
Tower LCC+Q when events are sent, check the LCC wiring. If the command is seen
in the LCC® monitor, but not in the command light, be sure that the command you
are sending is configured to respond on this Tower LCC. If there is no activity
shown in the LCC® monitor window, check that you have the correct interface
selected in the JMRI preferences, and that you have the correct COM port
selected.

The Tower LCC+Q is initially configured as simple input lines. You may use a RR-
CirKits I/O test board to send events simply by connecting it to either input port
and pressing the test buttons. An unprogrammed node should respond with the
default EventIDs to any input changes.

Tower LCC+Q Manual Rev-b 61

11 Boot Loader

11.1 Boot Loader Upgrade
If you should ever need to upgrade the Boot Loader itself for some reason follow
these steps. Skip this section for normal firmware upgrades.

 !! IMPORTANT !!: If you have JMRI open, please close it.

1) Restart JMRI V5.6 or later and do not open the 'OpenLCB > Configure
Nodes' menu under any circumstance.

2) Select OpenLCB > 'Firmware Update'.

3) From the 'Target Node ID' drop down box, select the TowerLCC node to be
updated.

4) Click Select to pick a firmware file.

5) From the file menu, select this file: 'xxx'.

6) Click "Open' and leave 'Address Space' at '239'; do not check 'Lock Node'.

7) Now click 'Load' to download the new boot loader Vxx.

During the download the Gold led will blink to show that the node is in 'Boot
Loader State'. (10% flash)

The progress bar on screen will now fill up to 100%, on the node the Blue and Red
led show bus activity.

After some time the message 'Download completed successfully' should appear.

The Gold led will continue to blink, because the node will remain in 'Boot Loader
State'.

Do not close the 'Firmware Downloader' window at this time, leave it open.

From the OpenLCB menu, click 'Configure Nodes' and select the (partially)
updated node.

It should now show 'Mod: Tower-LCC Bootloader' and 'Software: Vxx'.

Do not close the 'OpenLCB Network Tree' window at this time, leave it open and
proceed to 10.2 (step 3).

11.2 Firmware Upgrade
Note: Version C and later CDI files store the Virtual Track Circuit information in a
different format than version B. You will need to re configure this section after an
upgrade. Do NOT restore a configuration saved from an earlier firmware version.
It will destroy your virtual track circuit information.

If an update to your Tower LCC+Q firmware is needed, a program such as
"Firmware Update" in JMRI version 5.4 or later is required.

To enter Firmware upgrade mode:

1) Start JMRI and select "OpenLCB".

62 Tower LCC+Q Manual Rev-b

2) Select ‘Firmware Update’ from the OpenLCB drop down list.

3) Select your 'Target Node ID'. Note: If you have just completed the boot
loader upgrade it should still be selected.

4) Click ‘Select’ to pick a firmware file.

5) From the file menu, select: 'Tower-LCC-Q-V104-UPDATE.hex' or the latest
upgrade available.

6) Optionally you may check the ‘Lock Node’ check box to take it off line during
the upgrade.

7) Click the 'Load' button to initiate the upgrade to Tower-LCC+Q revision
v1.04. (or the latest version)

8) Wait until 'updating device firmware..' is complete.

9) Switch back to the OpenLCB Network Tree window.

10) It should now show 'Model: Tower-LCC+Q' and 'Software Version: v1.04'.

11) Any errors will be shown in the lower window ticker tape display.

If the node does not automatically enter boot mode and start the upgrade it may be
forced into boot mode by un-powering it, then holding down the ‘Gold’ button as
you power it up again. The gold LED should start flashing to indicate that it is in
forced boot mode. This will likely be required after a failed upgrade attempt.

Tower LCC+Q Manual Rev-b 63

12 Grounding and Isolation
Unlike the LCC Buffer-USB, the Tower LCC+Q is not optically isolated from the
LCC bus. This allows for possible ground loop problems between the LCC® and
your layout accessory power supplies, so be sure to keep the ground connection to
the Power-Point either isolated, or else in common with your layout power source.

Normally all Tower LCC+Q connections will originate or reference to the Tower
LCC+Q board itself, so there is no danger of ground loops with these connections.
RR-CirKits High power output boards are optically isolated from the Tower LCC+Q
ports and use their own power sources.

If you are building your own I/O boards or using third party units be sure to
observe the common/isolated ground rules, and never exceed 5V on any I/O pin.

Properly ground your boosters, your power supplies, and your desktop computer
through a 3 wire cable if they are not double isolated, and isolate them from each
other via isolated equipment where necessary.

64 Tower LCC+Q Manual Rev-b

13 Warranty Information

We offer a one year warranty on the Tower LCC+Q. This device contains no user
serviceable parts.

If a defect occurs, please contact RR-CirKits at: service@rr-cirkits.com for a
replacement.

Tower LCC+Q Manual Rev-b 65

14 FCC Information
This device complies with part 15 of the FCC Rules. Operation is subject to the
following two conditions:

1. This device may not cause harmful interference, and

2. this device must accept any interference received, including interference that
may cause undesired operation.

Note: This equipment has been tested and found to comply with the limits for a
Class B digital device, pursuant to part 15 of the FCC Rules. These limits are
designed to provide reasonable protection against harmful interference in a
residential installation. This equipment generates, uses and can radiate radio
frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However,
there is no guarantee that interference will not occur in a particular installation.
If this equipment does cause harmful interference to radio or television
reception, which can be determined by turning the equipment off and on, the
user is encouraged to try to correct the interference by one or more of the
following measures:
--Reorient or relocate the receiving antenna.
--Increase the separation between the equipment and receiver.
--Connect the equipment into an outlet on a circuit different from that to
 which the receiver is connected.
--Consult the dealer or an experienced radio/TV technician for help.

Any modifications to this device voids the user's authority to operate under and be
in compliance with these regulations. The actual measured radiation from the
Tower LCC+Q is much lower than the maximum that is permitted by the FCC
Rules, so it is unlikely that this device will cause any RFI problems.

66 Tower LCC+Q Manual Rev-b

http://www.rr-cirkits.com
sales@rr-cirkits.com

service@rr-cirkits.com
1-704-843-3769

Fax: 1-704-243-4310

RR-CirKits, Inc.
7918 Royal Ct.
Waxhaw, NC USA 28173

	Overview
	1 About LCC
	1.1 Some Definitions
	1.1.1 Node
	1.1.2 Segment
	1.1.3 Line
	1.1.4 Consumer (Output Function)
	1.1.5 Producer (Input Function)
	1.1.6 Sample Mode

	2 Tower LCC+Q Features
	2.1 Electrical Specifications

	3 Line Details
	3.1 Consumer (Output Function)
	3.1.1 The Output Line
	3.1.2 Drive Polarity:
	3.1.3 Delay:
	3.1.4 Action:

	3.2 Producer (Input Function)
	3.2.1 The input line
	3.2.2 Input Trigger:
	3.2.3 Delay

	3.3 Sample Mode

	4 Power and Serial Connections
	4.1 CAN LCC® Compatible Connector
	4.2 Power Connections
	4.3 Status Indicators
	4.4 Blue/Gold Buttons and LEDs
	4.4.1 Setting up Virtual Code Lines

	4.5 Tower LCC+Q I/O Connector Wiring

	5 Getting Started
	5.1 CDI (Configuration Description Information)
	5.2 Input/Output Configuration
	5.3 Identification
	5.4 Node Identification
	5.5 Line (I/O Ports)
	5.5.1 Lines
	5.3.4 Commands
	5.3.5 Indications
	5.3.6 Tower LCC+Q Secondary Messages

	6 Tower LCC+Q STL Logic Overview
	6.1 Statement List (STL) for the Tower LCC+Q
	6.1.0 Preface
	6.1.1 Purpose
	6.1.2 Basic Knowledge Required
	6.1.3 Segment: Conditionals

	6.2 The Language
	6.2.1 The Operator Statement
	6.2.2 The Variables
	6.2.3 The Compilation cycle
	6.2.4 The program cycle
	6.2.5 The Status Word

	6.3 Bit Logic Instructions
	6.3.1 Overview of Bit Logic Instructions
	6.3.2 Boolean bit logic operators:
	6.3.3 Nesting expressions:
	6.3.4 String termination:
	6.3.5 Change the Result of Logic Operation (RLO):
	6.3.6 Edge transition:

	6.4 Logic Control
	6.4.1 Overview of Logic Control Instructions
	6.4.2 The Jump Instructions

	6.5 Logic Variables
	6.5.1 Overview of different STL variable types
	6.5.2 Logic Operation
	6.5.3 Segment: Logic Inputs
	6.5.4 Segment: Logic Outputs
	6.5.5 Segment: Track Receiver
	6.5.6 Segment: Track Transmitter
	6.5.7 Memory Variables
	6.5.8 Timer Variables
	6.5.9 Timer details.

	6.6 STL Logic Operators
	6.6.1 Supported instruction Mnemonics

	7 Track Circuits
	7.1 Simulating a Code Line with Events
	7.2 Linking Virtual Code Lines
	7.3 Prototype Code Line

	8 ABS and APB Signal plus other examples
	9 Tower LCC+Q compatible Input/Output Cards
	9.1 BOD-4 (DCC Block Occupancy Detector - 4 block plus 4 I/O)
	9.2 BOD4-CP (DCC BOD 4 block, 4 Inputs, plus 2 turnout drivers)
	9.3 BOD-8 (DCC Block Occupancy Detector - 8 block)
	9.4 OIB-8 (Opto Isolator Board - 8 input)
	9.5 SCSD-8 (Single Coil Solenoid Driver)
	9.6 SMD-8 (Stall Motor Driver – 8 line)
	9.7 RB-4 (Relay Board - 4 x SPDT)
	9.8 RB-2 (Dual DPDT Relay Board)
	9.9 BOB-S (Break Out Board – Screw Terminal)

	10 Trouble shooting
	10.1 Sanity Test
	10.2 Activity Test

	11 Boot Loader
	11.1 Boot Loader Upgrade
	11.2 Firmware Upgrade

	12 Grounding and Isolation
	13 Warranty Information
	14 FCC Information

